The OR Times

Week of 1/19/2020

This week in the Times we’re going to share a story from Med Dimensions co-founder, Sean Belefeuille:

A local surgeon we have been working with reached out and asked for a femur and tibia/fibula 3D model for one of his patients, a medium sized and mixed breed dog. Dr. Hofmann suspected deformities in both the tibia and the femur. The main issue was several bone deformities that could affect patient movement and cause pain, eventually resulting in osteochondral arthritis and a plethora of other orthopedic complications if it were to go untreated. The surgical challenge in this case with having multiple deformities is that it would require the surgeon to do multiple procedures during the same surgery. This increases the surgery time, the risk to the patient and the cost to the family. After reviewing the models we provided him with, the surgeon determined one of the deformations was not as severe as he had thought while reviewing the imaging scan (CT). He decided the second procedure could be cut out, decreasing the surgery time and the cost of hospital stay. 


The actual process of repairing the issue was very similar to the first, a sort of deformation that he cut out a wedge to better align the bone. The procedure of a corrective osteotomy was a tremendous success in pre-op management, during surgery, and post-op follow up.

Med Dimensions has the capability to suit any and all surgeons needs through only the highest quality products and services!

Please leave a comment if you have any questions, and reach out to Fred at fred@m3dimensions.com if there is anything you’d like him to cover!

-Michael Campbell

Read More

The OR Times

Week of 1/12/2020

During shoulder arthroscopy, it’s extremely common to find some form of a bone spur on the acromion that is impinging the rotator cuff, typically supraspinatus, that is causing pain on patients. This pathology can appear when using radiology pre-op, and make it easier to find rotator cuff tears when in the sub-acromial space. However, occasionally an x-ray that shows a bone spur can be very misleading.

I was with a surgeon that was operating on a 46 year old male suffering from textbook acromioclavicular joint impingement symptoms, as well as a possible rotator cuff tear. Interestingly enough, the pre-op radiology report saw a slightly odd bone spur on medial side of the acromion, so the surgeon thought that it was going to be a simple distal clavicle excision and SAD. What we found through the microscope was a previous acromial fracture from when the patient was a child that had healed, but had also calcified over, so it was impinging on the shoulder in a major way and the main source of his pain.

Common Sub-Acromial Decompression with a bone spur.

This discovery did not necessarily affect the surgery in any way, outside of taking longer than expected, but left the surgeon upset because he had sent the students observing him for the day home. Acromial fractures are uncommon, personally I have seen thousands of shoulder cases and this was the first fracture of its kind I have seen in my career, so the teaching moment was lost. The simple solution that Med Dimensions could have assisted with is a pre-op model of the surrounding osteology of the glenohumeral joint, so this surgeon could have seen this odd x-ray in 3D and been prepared to teach his students in the moment, rather than just having to tell them about the unique case he had just completed.

Please leave a comment if you have any questions, and reach out to me at fred@m3dimensions.com if there is anything you’d like me to cover!

-Fred

Read More

The OR Times

Week of 1/5/20

In early December, I was in a case on a human 32 year old patient with anterior labrum of the hip and femeroacetabular defect pathologies. Going into the operation the surgeon noticed one large defect on the femoral head from the original x-ray, and we had at least some kind of game plan going into the case. We were going to use dried bone chips with a native PRP and Bone Marrow injection to fill in this defect and the surrounding tissues, as well as several suture anchors to repair the labrum. It all seemed to be working until we got into the joint and started cleaning up the joint space.

Figure depicting simple hip joint

What we originally thought was one large defect turned out to be several smaller defects and one gigantic defect in the femoral head, roughly the size of a quarter, not to mention 2 cysts on the acetabulum. Our original plan would work for the labrum, but left our femoral defect issues up in the air. We used a biocartilage scaffold that we had in the surgery center for the cysts on the acetabulum, and used the cancellous bone chips/PRP/Bone Marrow mix for the smaller defects. However, the large defect was only cleaned out because we were not prepared for the size of the hole in this patient’s femur and did not have the necessary tools or implants available to fix this issue.

If we had sent for a pre-op model with a CT-Scan, there is no question that we would have been more prepared for this case and it would have given us a much better chance of fixing this patient’s pathology and allow us to be more efficient while in the joint space.

Please leave a comment if you have any questions, and reach out to me at fred@m3dimensions.com if there is anything you’d like me to cover!

Happy New Year from Med Dimensions!

-Fred

Read More

3D-Printed Replica of Brain Aneurysm Helps Guide Surgical Repair

One of first reported uses of the technology for a cerebrovascular malformation

From the Cleveland Clinic, 06/05/2019

In April 2019, clinicians in Cleveland Clinic’s Cerebrovascular Center performed one of the first reported brain aneurysm repairs guided by preoperative and intraoperative use of a 3D-printed replica of the aneurysm.

The patient was an otherwise healthy man in his 50s with a large (12-mm) aneurysm of the anterior communicating artery. He underwent a complication-free open craniotomy with clipping and was on track to a full functional recovery several weeks after the surgery.

The 3D-printed model (shown with a clip in photo below) was produced at actual size based on angiograms of the aneurysm processed by radiologists and other members of a multidisciplinary team in Cleveland Clinic’s Lerner Research Institute. To date, the team has generated over 100 3D-printed anatomic models to help guide complex surgeries ranging from liver transplants to congenital heart defect repairs.

An unprecedented window into anatomy

“I was able to hold the aneurysm model in my hand, which greatly enhanced my understanding of the patient’s anatomy and enabled us to develop a truly patient-specific surgical plan,” says Mark Bain, MD, MS, Head of Cerebrovascular and Endovascular Neurosurgery and lead surgeon on the case.

“The 3D-printed model allowed me to visualize the surgical approach before I made a single incision,” he continues, “enabling me to select the clip size in advance and know the exact location of the important daughter branches coming out of the aneurysm.”

The model also gave Dr. Bain a preoperative heads-up about an artery that was stuck to the aneurysm, which allowed him to determine that it was clear of the neck of the aneurysm where the clip would be applied. “It was really helpful to know that going in and not be blindsided by that artery at the time of surgery,” he shares. “I was genuinely surprised by how helpful the model was.”

That utility continued into the intraoperative phase, where the model was at the surgical team’s side for reference throughout the procedure, Dr. Bain notes, “allowing us to check and recheck the anatomy.”

A bevy of benefits

Dr. Bain identifies at least five distinct benefits that 3D-printed anatomical replicas promise for appropriate future cases.

1) Better operative planning, with potential for fewer complications. Dr. Bain’s comments above illustrate the clear benefits for preoperative planning and intraoperative visualization. Whether these lead to improved outcomes is something his group is eager to study in the months and years ahead. “We’re starting a couple of studies of this question,” he says.

2) Potential for reduced operative time. He estimates that the advance planning made possible by the model in this first case shortened the operative time by about half “because I knew exactly where to go and where to put the clip, and I already had the clip selected.”

3) Better patient education. Before his operation, the case patient and his family members were able to hold the model in their hands while Dr. Bain explained the procedure. “It was very valuable in helping them fully understand why we were choosing the procedure we did,” he says, adding that this promises to enhance patient satisfaction.

4) Value for resident and fellow training. “Residents present for this case said the anatomy of the aneurysm was so much clearer to them during the procedure by dint of having the model as an intraoperative reference,” notes Dr. Bain, shown in the photo below holding the model in hand as he discusses the procedure with trainees. “And one of our departing fellows raved about how much clearer she could see the anatomy thanks to the 3D model and how valuable this will be for training new physicians.”

5) Likely utility in procedure selection. Although the 3D replica didn’t influence procedure choice in this case, Dr. Bain says 3D-printed models likely will for some future patients. “I can foresee instances where the replica will reveal, for example, that a particular branch would not be appropriate for planned stenting or that a particular spot would be unlikely to hold a coil well,” he explains. “This may help improve our selection of cases or choice of procedure.” He adds that this includes decisions on when to use an endovascular versus open surgical approach. To that end, his team plans to generate hollow 3D-printed aneurysm replicas to help explore catheter navigation inside vessels for cases where endovascular procedures are planned.

How broadly to apply the technology?

While the case above was ideal for introducing 3D printing technology because of the large size of the aneurysm (12 mm), Dr. Bain says the technology can be used to replicate aneurysms of sizes down to 5 mm or even smaller. “Some of the branches in this first model were under 1 mm and we could still see them well,” he notes. “This technology has the resolution to pick up details at very small scale.”

So if aneurysm size is not much of a limiting factor, how will his team decide when to use this technology moving forward? “That’s one of the things we’ll be looking to explore in the studies we’re getting underway surrounding this,” he says. He explains that his team is pursuing grant funding to continue generation of 3D-printed replicas so they can accumulate enough data to begin to assess effects on outcomes and overall costs.

The cost of 3D printing is one limiting factor, as is time. Because it typically takes a couple of weeks to generate a replica, the technology is limited to nonurgent elective cases.

In an ideal world, Dr. Bain says, “I’d love to take every vascular malformation for which we get good imaging — arteriovenous malformations, fistulas, aneurysms — and send those images off for 3D printing. But we’ll have to see where the data fall to determine how broadly this should be applied.”

Link: https://consultqd.clevelandclinic.org/3d-printed-replica-of-brain-aneurysm-helps-guide-surgical-repair/

Read More

The OR Times

M3Dimensions Logo

Week of 12/15/2019

Welcome to the OR Times! This forum will discuss several hot topics in surgery, and how we may be able to assist with all kinds of growing problems. I’m a professional technical consultant for a plethora of medical devices, and can provide real OR insight as to how pre-op products can totally change the trajectory of success of surgery. I will be writing a post weekly, however there may be an occasional relevant article or story provided by a different author.

For my first article I want to address incomplete fractures and osteochondral deformities of weight bearing bones/joints on canine patients. One of the many complications that can arise during these surgeries is blood loss- specifically in trauma cases; the more time during surgery, the more chances there are for blood loss and likelihood of a blood transfusion. These issues only put more stress on the surgeons, increased OR time, higher infection rate, and increased cost for the owners of the animals.

What can be done to prevent this is either:

  1. new and expensive instrumentation/video
  2. detail oriented pre-op models

There is obviously plenty of evidence of the benefit of new instrumentation and technology, but it can be very expensive. Where pre-op models can prove their worth is in their cost-effective nature and practicality. For example, a specific canine case in 2017.

Pictured above is a distal femur osteochondral defect on a canine patient. In the surgeons hand is the model used for reference.

The above model was used for making practice cuts pre-surgery, and later used as a visual aid during the difficult surgery. The young dog had a distal femoral deformation which lead to patellar subluxation. The surgeon provided CT scans of the dog, Med Dimensions isolated and converted the femur into a 3D printable STL file. Once the femur model was printed, it was provided to the surgeon, who used the model in pre-op strategy and as a reference point during the surgery. The use of this model lead to a solution for all of the problems I mentioned in the second paragraph for this specific case.

This is just one example of how I’ve seen these models be beneficial before, during, and after surgery. I’m looking forward to sharing more of these seemingly endless success stories with you! Please leave a comment if you have any questions, and reach out to me at fred@m3dimensions.com if there is anything you’d like me to cover!

-Fred

Read More